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Abstract

A focus of the Arctic Research of the Composition of the Troposphere from Aircraft and
Satellites (ARCTAS) mission was examination of bromine photochemistry in the spring
time, high latitude troposphere based on aircraft and satellite measurements of BrO
and related species. The NASA DC-8 aircraft utilized a chemical ionization mass spec-5

trometry (CIMS) instrument to measure BrO and a mist chamber (MC) to measure
soluble bromide. We have determined that the MC detection efficiency to molecular
bromine (Br2), hypobromous acid (HOBr), bromine oxide (BrO), and hydrogen bromide
(HBr) as soluble bromide (Br−) was 0.9±0.1, 1.06±0.30, 0.4±0.1, and 0.95±0.1, re-
spectively. These efficiency factors were used to estimate soluble bromide levels along10

the DC-8 flight track of 17 April 2008 from photochemical calculations constrained to
in situ BrO measured by CIMS. During this flight, the highest levels of soluble bromide
and BrO were observed and atmospheric conditions were ideal for the space-borne ob-
servation of BrO. The good agreement (R2 = 0.76; slope=0.98; intercept=−3.5 pptv)
between modeled and observed soluble bromide, when BrO was above detection limit15

(>2 pptv) under unpolluted conditions (NO<100 pptv), indicates that the CIMS BrO
measurements were consistent with the MC soluble bromide. Tropospheric BrO ver-
tical column densities (BROVCD

TROP) derived from CIMS BrO observations compare well

with BROVCD
TROP from OMI on 17 April 2008.

1 Introduction20

Tropospheric ozone depletion events (ODEs) have frequently been observed in or near
the marine boundary layer in the Arctic (e.g. Oltmans, 1981; Bottenheim et al., 2009)
and the Antarctic (e.g. Jones et al., 2009) during spring time. The ODEs can extend
over horizontal scales of hundreds of kilometers (Ridley et al., 2003) and vertically from
the surface to altitudes as high as several hundred meters to ∼1 km (Bottenheim et al.,25

2002; Ridley et al., 2003). In ODEs ozone mixing ratios drop from typical 30–40 ppbv
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to as low as 1 ppbv (e.g. Bottenheim et al., 2002, 2009; Anlauf et al., 1994). During
ODEs, bromine compounds can oxidize gaseous elemental mercury (GEM) to more
active and soluble mercury compounds (e.g. Lindberg et al., 2002), which can deposit
to the surface and become involved in biogeochemical cycles. The oxidation of certain
volatile organic compounds (VOCs) can also be enhanced during ODEs (e.g. Jobson5

et al., 1994).
Field measurements (e.g. Barrie et al., 1988; Hausmann and Platt, 1994) and mod-

eling results (e.g. Fan and Jacob, 1992; McConnell et al., 1992) have demonstrated
that bromine chemistry plays a large role in ODEs. The mechanisms of bromine cat-
alyzed ozone destruction are reviewed by Simpson et al. (2007) and the key reactions10

are listed below.

Br2+hv →2Br (R1)

Br+O3 →BrO+O2 (R2)

BrO+BrO→2Br+O2 (R3)

BrO+HO2 →HOBr+O2 (R4)15

BrO+NO→Br+NO2 (R5)

BrO+hv →Br+O (R6)

HOBr+hv →Br+OH (R7)

Br+CH2O→HBr+HCO (R8)

Br+HO2 →HBr+O2 (R9)20

HOBr(aq)+Br−+H+→Br2(aq)+H2O (R10)

BrO+NO2+M→BrONO2+M (R11)
27002
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BrONO2+H2O→HOBr(aq)+HNO3(aq) (R12)

Molecular bromine (Br2) photolyzes and produces Br atoms at sunrise (Reaction R1).
Ozone is destroyed by a catalytic cycle initiated by the reaction of Br with O3, followed
by the self-reaction of bromine oxide (BrO) that regenerates Br atoms and destroys
odd oxygen (Reactions R2 and R3). The efficiency of the cycle is suppressed by5

the conversion of bromine radicals to Hydrogen bromide (HBr), which is soluble and
therefore can deposit to aerosols or the surface (Evans et al., 2003). Hypobromous
acid (HOBr), which is produced by the reaction of BrO and HO2 (Reaction R4) as well
as Bromine nitrate (BrONO2) hydrolysis (Reaction R12), can photolyze to produce Br
atoms (Reaction R7) or react with Br− on surfaces to regenerate Br2 (Reaction R10)10

and sustain active bromine chemistry (Fan and Jacob, 1992). The most abundant
daytime gas-phase bromine species in the above mechanism, when ozone is above
1 ppbv in a typical Arctic environment (NO2 < 5 pptv), are BrO, HOBr and HBr (e.g.
Evans et al., 2003; Liao et al., 2011b). The most abundant night time species for these
conditions is likely to be Br2(Liao et al., 2011b).15

Models incorporating bromine chemistry have been developed to simulate global
ozone and mercury concentrations (e.g. Zeng et al., 2003; Holmes et al., 2010). How-
ever, the sources of active bromine in the atmosphere are not well quantified (e.g.
Simpson et al., 2007 and references therein). Consequently, the bromine source is
often parameterized in models or obtained from satellite observations of BrO (e.g. Fan20

and Jacob, 1992; Zeng et al., 2003). However, there are challenges deriving the tro-
pospheric column BrO from satellite observations, which are obtained by subtracting
the stratospheric contribution from a retrieval of total column BrO. Basic efforts at infer-
ring tropospheric column BrO have assumed the stratospheric contribution is zonally
symmetric. However, Theys et al. (2009) showed that the stratospheric burden of total25

bromine exhibits strong zonal asymmetries at high latitudes, particularly during boreal
spring. In addition, Salawitch et al. (2010) demonstrated the sensitivity of tropospheric
column BrO inferred from satellites to zonal asymmetries in the satellite burden. An-
other issue is the impact of clouds on the calculation of air mass factors (AMFs) and
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the retrieval processes for the altitudes below the clouds (Kühl et al., 2008; Theys et
al., 2011; Choi et al., 2011). The validation of tropospheric column BrO inferred from
satellite retrievals using in situ measurements of BrO is an important research task,
which we also address below.

The Arctic Research of the Composition of the Troposphere from Aircraft and Satel-5

lites (ARCTAS) (Jacob et al., 2010) mission and the Aerosol, Radiation, and Cloud
Processes affecting Arctic Climate (ARCPAC) study (Brock et al., 2011) in spring 2008
provided an excellent opportunity to validate satellite BrO observations with in situ mea-
surements of bromine species. ARCTAS and ARCPAC both featured research flights
in the Arctic using aircraft with large suites of instruments (Jacob et al., 2010; Brock10

et al., 2011). Both the NASA DC-8 and NOAA WP-3D were equipped with chemi-
cal ionization mass spectrometers (CIMS) capable of measuring BrO and Br2 +HOBr
(Neuman et al., 2010). The NASA DC-8 was also equipped with a mist chamber (MC)
measuring soluble bromide. The MC soluble bromide measurement is the sum of all
gas phase species that dissolve in aqueous solution to form Br− (Ridley et al., 2003;15

Dibb et al., 2010). This measurement has been used in several polar locations and
has proved to be an excellent tracer for active bromine chemistry (Ridley et al., 2003).
Results from ARCTAS and ARCPAC indicated that tropospheric BrO levels were of-
ten much smaller than those derived from satellite data, particularly for an assumption
of a zonally symmetric stratospheric burden. Salawitch et al. (2010) showed that low20

in situ BrO concentrations and background, non depleted levels of O3 were often ob-
served in the footprint of satellite BrO “hotspots”, especially over Hudson Bay. They
suggested this apparent discrepancy could be resolved if very short lived bromocar-
bons contribute large amounts of inorganic bromine to the lowermost stratosphere,
leading to substantial BrO mixing ratios that could give elevated column BrO in regions25

of a low altitude (high pressure) tropopause. Neuman et al. (2010) analyzed a series
of flights from ARCPAC and ARCTAS and showed that active bromine (Br2 +HOBr)
(up to ∼16 pptv) was often detected in the marine boundary layer but found relatively
low levels of BrO (up to ∼4 pptv). The focus of this work is to investigate the ARCTAS
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DC-8 flight on 17 April 2008 when the highest BrO and soluble bromide levels were ob-
served by CIMS and MC, respectively. The response of the MC to the most abundant
bromine (Br2, BrO, HOBr, and HBr) species is quantified to allow a thorough compari-
son of CIMS and MC data. Column abundances are derived from the in situ data and
compared to satellite observations.5

2 Methods

2.1 Mist chamber (MC) characterization

The response of the MC to the abundant bromine species (Br2, BrO, HOBr, and HBr)
was determined in a series of laboratory tests. A known amount of each species
was quantitatively delivered to the MC inlet and the resulting concentration of bromide10

was measured. In this manner the MC response factor to per atom of bromine was
measured. A CIMS was used to quantify the Br2, HOBr and BrO distribution delivered
to the MC. This was critical as HOBr and BrO could not be delivered to the MC in a
pure form.

2.1.1 Chemical ionization mass spectrometer (CIMS)15

The CIMS is very similar to that used to measure BrO, peroxy acyl nitrate (PANs),
pernitric acid (HO2NO2), and sulfur dioxide (SO2) (Liao et al., 2011a; Slusher et al.,
2004; Kim et al., 2007; Huey, 2007). The methods used to measure and calibrate the
CIMS to BrO and Br2 are described in Liao et al. (2011a). Hydrated I− was utilized as a
reagent ion to detect the bromine species and the corresponding reactions of the core20

ions are listed below;

Br2+ I−→ IBr−2 (R13)

BrO+ I−→ IBrO− (R14)
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HOBr+ I−→ IHOBr− (R15)

I− was chosen as a reagent ion because it can selectively and accurately detect
HOBr, BrO, and Br2 (Liao et al., 2011a, b; Neuman et al., 2010). SF−

6 was not used
as a reagent ion in this study as it is not capable of selectively detecting HOBr (Huey
et al., 1995). The accuracy of the Br2, BrO and HOBr measurements in the laboratory5

were estimated to be 7 %, 32 %, and 32 %, respectively.

2.1.2 Mist chamber (MC)

The mist chamber, similar to that used to measure nitric acid (HNO3) and other soluble
species (e.g. Dibb et al., 1998), can detect soluble bromide (Br−) in gas phase and fine
particles in the sampling flow. The gaseous species were concentrated into a small10

volume of ultrapure water and the stripping solutions were analyzed by ion chromatog-
raphy as Br− in the solution (Dibb et al., 1994). The Br− concentration in the sampling
gases was determined from the concentration of Br− in the solution, the solution vol-
ume and the gas flow rate to the MC. The measurement uncertainty for soluble bromide
was ∼±15 %. The uncertainty represents a combination of accuracy and precision at15

the one sigma level.

2.1.3 Experiment setup

The CIMS and MC were operated simultaneously in the same laboratory. Bromine
compounds were delivered to both instruments through perfluoroalkoxy (PFA) Teflon
tubing. In the initial experiments, setup A, a flow of nitrogen (N2) at 3 standard liters per20

minute (slpm) containing bromine compounds was delivered to the inlets of the CIMS
and the MC alternately with the same Teflon tubing. In later experiments, setup B,
a 3 slpm flow containing bromine compounds was symmetrically divided with a PFA
tee between the CIMS and MC. The length of the Teflon tubing from the HOBr source
to the MC was ∼1.2 m longer than to the CIMS in setup B. As a consequence, any25

possible interactions of gas with the sampling line were the same in setup A for both
27006
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instruments and were larger for the MC in setup B. Upon exiting the sample line, the gas
flowed directly into the CIMS ion-molecule reaction tube (flow tube), where very little
wall interaction and conversion of bromine species (e.g. HOBr to Br2) occur (Neuman
et al., 2010). The potential interactions with other surfaces in the MC (e.g. the wetted
glass walls of the mist chamber) may cause interconversion of bromine species. As5

setup B better represented the conversion of bromine compounds (e.g. HOBr) on the
sampling inlet of the MC on the DC-8, the detection efficiencies of HOBr and Br2 from
setup B are used to predict soluble bromide concentrations.

2.1.4 Br2, BrO, HOBr and HBr preparation

Pure gas phase Br2 was obtained from a permeation tube (Kin-tek Trace Source™
10

disposable permeation tube for bromine). 20 standard cubic centimeters per minute
(sccm) of N2 continuously flowed over the Br2 permeation tube, which was held at
a constant temperature (40 ◦C). The Br2 permeation tube output was measured, by
converting I− to I−3 in aqueous solution (Liao et al., 2011a), to be 86±6 ng min−1 and
∼4 ppbv in 3 slpm N2 flow.15

BrO was generated by the reaction of Br2 with O (3P) in excess O3 (Liao et al.,
2011a). O3 was produced by flowing 30 sccm of O2 through a quartz tube illuminated
by a UV lamp. The O3 and Br2 was diluted in ∼1.5 slpm N2 and flowed through an oven.
When the oven was heated to ∼350 ◦C, BrO was produced by the following series of
reactions.20

O3+M→O2+O(3P)+M (R16)

Br2+O(3P)→BrO+Br (R17)

Br+O3 →BrO+O2 (R18)

The CIMS sensitivity ratio of BrO to Br2 was estimated to be 0.47±25 %, based on
the amount of BrO synthesized and the amount of Br2 decomposed (Liao et al., 2011a).25
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Gas phase HOBr was prepared by adding 5–7 drops of liquid Br2 to silver nitrate
(AgNO3) aqueous solution (2.2 g AgNO3 in 100 ml de-ionized H2O) in a glass trap that
was kept at 0 ◦C in the dark (Jin et al., 2007). The AgNO3 is used to precipitate out Br−

as silver bromide (AgBr). This drives the equilibrium towards HOBr and reduces the
degassing of HBr from the solution.5

Br2+H2O⇔HOBr+H++Br− (R19)

Ag++Br−→AgBr ↓ (R20)

Gas phase HOBr and Br2 were removed from the trap in a flow of N2 (5–50 sccm).
The resulting gas phase mixture of HOBr and Br2 was diluted into a N2 flow of ∼3 slpm
and used as a source of HOBr. In general, the ratio of HOBr to Br2 in the source flow10

was 3–4 depending on N2 flow rates. The amount of HOBr in the flow was determined
by conversion of the HOBr to Br2 via reactions on humidified NaBr crystals.

HOBr+NaBr→Br2+Na++OH− (R21)

Assuming a 1:1 yield for this reaction, the relative CIMS sensitivity of HOBr to Br2
was determined to be 0.5±25 %.15

HBr was obtained from a commercial source tube (Kin-tek Trace Source™ 57 Series
Hydrogen bromide), which is a small stainless steel cylinder (15 cm l×4.5 cm OD) with
a Teflon membrane that allows permeation of the HBr. The source was kept at a con-
stant temperature of 30 ◦C and 20 sccm of N2 was continuously passed over the source.
The output of the HBr from the source was determined to be 23 ng min−1 by passing20

the flow through aqueous solution followed by ion chromatographic measurements.

2.2 BrO and soluble bromide measurements from the DC-8

The CIMS instrument aboard the NASA DC-8 aircraft that measured halogens was
mechanically nearly identical to the one in the laboratory experiments here but used
different ion chemistry. The CIMS utilized SF−

6 as a reagent to detect halogen and other25
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species (e.g. BrO, SO2) as negative product ions (e.g. BrO−, F2 SO−
2 ). The configura-

tion and performance of the CIMS instrument are described in Neuman et al. (2010).
The CIMS and the MC sampling inlets on the DC-8 were ∼1 m and heated to 40 ◦C.
The detection limits of BrO from the DC-8 ranged from 2–5 pptv for a 30 s sampling pe-
riod and the measurement uncertainty was ±40 %. The DC-8 MC measurements were5

performed using an instrument described in detail by Scheuer et al. (2003, 2010). The
soluble bromide detection limit was 1 pptv for a 1.5 min sampling period in the bound-
ary layer and increased with flight altitude to ∼6 pptv at 12 km. The soluble bromide
measurement uncertainty was ± (15 %+0.5 pptv).

2.3 HBr, HOBr and soluble bromide prediction during ARCTAS10

A simple photochemical model was used to predict HBr and HOBr levels from CIMS
measurements of BrO. The mechanism used in the model includes Reactions (R2)–
(R9) as well as the heterogeneous loss of HBr and HOBr. HBr and HOBr were as-
sumed to be in steady state due to their relatively short lifetimes of ∼1 h and ∼8 min, re-
spectively. The lifetime of HBr is mainly determined by heterogeneous loss on aerosol15

surfaces (Fan and Jacob et al., 1992; Liao et al., 2011b). Because nitrogen dioxide
(NO2) concentrations (<5 pptv) were near or below detection limits when significant
BrO was detected (BrO>3 pptv), BrONO2 formation was neglected. The photochem-
ical model was constrained by observations of BrO, formaldehyde (CH2O), nitrogen
oxide (NO), O3, peroxy radicals (HO2), J values, temperature, pressure, aerosol sur-20

face area and aerosol number density on DC-8. CH2O was measured by a difference
frequency generation absorption spectrometer (Weibring et al., 2006). NO and O3
were measured from a 4-channel chemiluminescence instrument (Weinheimer et al.,
1998). J values were obtained from NCAR actinic flux spectroradiometers (Shetter and
Muller, 1999). Aerosol surface area and number density were measured by an ultra-25

high sensitivity aerosol spectrometer (UHSAS) (Cai et al., 2008). Constrained HBr and
HOBr calculations combined with the measured response factors of the MC to these
species allowed soluble bromide to be predicted from CIMS observations of BrO.
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2.4 Satellite-derived tropospheric BrO vertical column density

The tropospheric BrO vertical column density (VCD) is derived using the residual
method (Theys et al., 2011; Choi et al., 2011). The analysis uses: the slant column
density (SCD) of BrO as provided in the publicly released Ozone Monitoring Instru-
ment (OMI) BrO v3.0 data product (Kurosu and Chance, 2011); air mass factors (ratio5

of slant to vertical columns) found using a radiative transfer model (Choi et al., 2011);
as well as stratospheric column BrO obtained from a model simulation for boreal spring
2008 (Salawitch et al., 2010). A detailed explanation and discussion of the sensitivity
of satellite-derived tropospheric column BrO is given in Choi et al. (2011). Here we
provide a brief overview.10

OMI is a nadir-viewing ultraviolet and visible (UV/Vis) sensor on the NASA Aura satel-
lite, which is in a sun-synchronous polar orbit with a local overpass time near 13:30 LT.
BrO SCD is retrieved by direct fitting of backscattered UV radiances to absorption
cross-sections of BrO (the target gas), NO2, HCHO, SO2 and inelastic rotational-
Raman scattering (also known as the Ring effect) using a non-linear least-squares15

approach (Chance, 1998) with a spectral fitting window between 319 and 347.5 nm.
An estimate of stratospheric BrO VCD is calculated from a model simulation (Salaw-

itch et al., 2010). Distributions of all species other than bromine bearing compounds
originate from a run of the Whole Atmosphere Community Climate Model (WACCM)
(Garcia et al., 2007) conducted using analyzed winds for April 2008. Vertical distribu-20

tions of Bry (the sum of inorganic bromine species) are specified, using the relation
between Bry and chlorofluorcarbon-12 (CFC-12), as well as profiles of CFC-12 from
the NASA Global Modeling and Assimilation Office (GMAO) Goddard Earth Observ-
ing System Data Assimilation System Version 5 (GEOS-5) (Rienecker et al., 2007).
The contribution of very short lived (VSL) bromocarbons is represented by adding25

7 pptv to the baseline Bry versus CFC-12 relation, which represents gas injection of
bromine from very short lived sources. The baseline Bry relation represents source of
gas injection of the organic bromocarbons that cross the tropopause: bromomethane
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(CH3Br), halons, and dibromomethane (CH2Br2). Mixing ratios of BrO at the time
of satellite overpass are determined using a photochemical steady state model con-
strained by radical precursors (e.g. O3, water vapor (H2O), methane (CH4), total chlo-
rine species (Cly), total reactive nitrogen (NOy), Bry, etc.) from WACCM (Choi et al.,
2011). The stratospheric BrO VCD is obtained by integrating the BrO mixing ratio from5

the tropopause (WMO definition of thermal tropopause) to 0.01 hPa.
AMFs, a ratio of SCD to VCD by definition, are used to convert SCD to VCD

(VCD=SCD/AMF). The stratospheric AMF is provided as an OMI total column product.
The tropospheric AMF is calculated using the Linearized Discrete Ordinate Radiative
Transfer (LIDORT) model (Spurr et al., 2001), which considers the effects of the tropo-10

spheric BrO profile, surface albedo, and viewing geometry (Choi et al., 2011).
The tropospheric BrO VCD is calculated from a tropospheric residual column ob-

tained by subtracting the stratospheric SCD (product of stratospheric VCD and strato-
spheric AMF) from the total SCD. The tropospheric BrO VCD is then obtained by di-
viding the residual tropospheric slant column by the tropospheric AMF. Further details15

are given in Choi et al. (2011). Our approach is similar to that of Theys et al. (2011),
except our stratospheric VCD is larger than that used by Theys et al. (2011) and we
use an independent radiative transfer model.

3 Results and discussion

3.1 Response of the MC to Br2, HOBr, BrO and HBr20

BrO, HOBr, HBr are likely the most abundant daytime bromine species when O3 is not
completely depleted in the typical Arctic environment (NO<5 pptv) (Evans et al., 2003).
Br2 is the likely dominant nighttime bromine species under this condition. As a result,
the detection efficiencies of BrO, HOBr, HBr and Br2 by the MC were characterized and
reported in this study.25
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3.1.1 Br2

The MC responded to the presence of Br2 in the gas phase as Br− (Table 1). The
ratio of detected Br− to Br2 was found to be 0.40±0.10 per Br atom for setup A and
0.45±0.10 per Br atom for setup B (Table 2). The error bars are estimated from a
combination of the estimated potential systematic error in Br2 and Br− measurements5

and variance of the individual Br− to Br2 ratio measurements. To confirm the nearly
complete dissolution of Br2, the Br2 permeation tube output was passed through a trap
containing deionized water. The output of the trap was monitored by the CIMS and
effectively all Br2 was found to be scrubbed by the solution, consistent with efficient
detection of Br2 by the MC. Br2 is hydrolyzed to form Br− and HOBr in aqueous solution,10

with a hydrolysis rate constant, k19, of 110 s−1 (at 20 ◦C) (Eigen and Kustin, 1962). This
suggests that each Br2 molecule produces one bromide ion which is detected with near
100 % efficiency by the MC. The HOBr produced in aqueous solution in the MC does
not appear to convert to bromide on the time scale of the measurement (5 min). Thus
an efficiency of ∼0.5 (on a per molecule basis) for detecting the bromine atoms in Br215

as bromide is consistent with its known solution chemistry.

3.1.2 HOBr

The MC was found to consistently respond to the presence of HOBr as bromide (Ta-
ble 1). This is likely due to conversion of HOBr on the sampling surfaces to Br2, which
is detected by the MC as Br−. The ratio of HOBr to Br− detected is 0.41±0.15 for20

setup A and is 1.06±0.30 for setup B (Table 2). The error bars are calculated from
a combination of the estimated potential systematic error in HOBr and Br− measure-
ments and the variance of the individual Br− to HOBr ratio measurements. The results
for Br2 indicate that HOBr in aqueous solution in the MC is not detected as bromide.
However, Neuman et al. (2010) have demonstrated that gas phase HOBr is readily25

converted to Br2 on even nominally clean surfaces. The greater detection efficiency
for HOBr in the MC for the longer inlet setup B is also consistent with conversion of
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HOBr to Br2, with some of the bromine coming from the inlet surface. The resulting
Br2 will hydrolyze and be detected in the MC as described above. Consequently, HOBr
will be detected efficiently as bromide by the MC via conversion on the inlet and other
surfaces to Br2.

HOBr→Br2
k19−→Br− (R22)5

3.1.3 BrO

BrO was also detected as soluble bromide by the MC. The ratio of BrO to Br− was found
to be 0.4±0.1 (Table 2). As this result was somewhat surprising, it was confirmed by
repeatedly turning on and off the BrO from the Br2/O3 source by modulating the ozone
levels. In addition, tests with the CIMS confirmed that BrO in a gas stream is removed10

by deionized water. At this time the mechanism for the conversion of ∼40 % of BrO to
Br−(aq) is not determined.

3.1.4 HBr

The sensitivity ratio of HBr to Br2 measured by CIMS using reagent ion I− was less
than 1:100, which implies that the CIMS instrument using reagent ion I− has a very15

low sensitivity for detecting HBr. The CIMS then was not used to quantify HBr and the
HBr permeation tube output was determined to be 23 ng min−1 by ion chromatography.
The MC detected HBr with 0.95±0.1 efficiency. This is consistent with detection of
effectively 100 % of HBr as soluble bromide by the MC.

3.1.5 Implications for soluble bromide measurements20

The results above indicate that the MC measurements of soluble bromide during ARC-
TAS (and other missions such as Tropospheric Ozone Production around the Spring
Equinox (TOPSE)) (Ridley et al., 2003) are due to a multitude of compounds. As

27013

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/26999/2011/acpd-11-26999-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/26999/2011/acpd-11-26999-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 26999–27030, 2011

Characterization of
soluble bromide
measurements

J. Liao et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

conversion of HOBr to Br2 on the walls of the MC or sampling line was very likely,
soluble bromide ([Br−]) can be estimated by the following equation.

[Br−]=0.9 [Br2]+1.06 [HOBr]+0.4 [BrO]+0.95 [HBr]. (1)

This indicates that a MC can be used to examine the areas of active bromine chem-
istry where BrO and HOBr are enhanced.5

3.2 Case study of BrO and soluble bromide measurements

On research flight 17 April 2008 of ARCTAS the highest bromine levels for the mission
were observed. During this flight the NASA DC-8 frequently sampled ozone depleted
air masses, with significant levels of bromine in the Arctic boundary layer. The aircraft
track for this flight from Fairbanks, AK to the North Pole is displayed in the top panel of10

Fig. 2. The flight track is color coded by altitude. The aircraft sampled the boundary
layer air five times during this flight. O3 depletions were clearly observed when the
boundary layer was sampled (middle panel of Fig. 2). Further description of this flight
is given by Choi et al. (2011).

The observations of BrO, Br2 +HOBr, soluble bromide, O3, and altitude on one flight15

leg in the boundary layer, where maximum bromine was detected, are shown in the
bottom panel of Fig. 2. The corresponding region on the map is denoted with the
red circle in the top panel of Fig. 2. Ozone depletion and elevated bromine (soluble
bromide, Br2 +HOBr and BrO) were clearly measured when the aircraft flew down to
the boundary layer (altitude <200 m). The maximum soluble bromide detected during20

this flight was ∼31 pptv, when ozone was depleted to ∼10 ppbv, and up to ∼7 pptv
BrO and HOBr+Br2 were detected. Due to the conversion of HOBr on the Teflon
inlet (Neuman et al., 2010), the CIMS Br2 signal represents the lower limit to the sum
Br2 +HOBr. As the mixing ratio of rapidly photolyzed Br2 in the daytime is likely to be
very low (<=∼1 pptv) (Fan and Jacob, 1992; Liao et al., 2011b), the Br2 signal is highly25

likely to correspond to HOBr.
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To assess whether the concentrations of BrO reported by the CIMS instrument
are consistent with the soluble bromide observations from the MC, we first calcu-
lated the abundances of HBr and HOBr using a photochemical model (described in
Sect. 2.3) constrained by the measurements of BrO and other species. Soluble bro-
mide was then calculated based on the measured detection efficiency for BrO, HOBr,5

and HBr. An example of observed BrO and soluble bromide and modeled HOBr, HBr
and soluble bromide on two flight legs, both with BrO above detection limit (>2 pptv),
is shown in Fig. 3. The correlation plot of modeled and observed soluble bromide
during 17 April 2008 flight when BrO was above detection limit (>2 pptv) under un-
polluted conditions (NO<100 pptv) is shown in the left panel of Fig. 4. Considering10

the measurement uncertainties in BrO (∼40 %), soluble bromide, J values, reaction
rates, mass accommodation coefficients, and aerosol surface areas, the agreement
(R2 =0.76; slope=0.98; intercept=−3.5 pptv) between measured and modeled sol-
uble bromide indicates that reported soluble bromide concentrations by the MC are
consistent with the BrO measurements from the CIMS instrument as well as our cur-15

rent understanding of inorganic bromine photochemistry. It is also interesting to note
that the modeled HOBr was well correlated with the measured HOBr+Br2 (R2 =0.86,
slope=1.42, intercept=1.71 pptv) (Fig. 4 right panel), consistent with the assumption
of efficient conversion of HOBr on the inlet walls.

3.3 Comparison of BrO Satellite observations with in situ BrO measurements20

The region of the Artic sampled by the DC-8 17 April 2008 provides ideal conditions
for comparison of satellite and aircraft determinations of tropospheric BrO. The sky
was clear, the surface was bright, and the viewing geometry was amenable for high
sensitivity to tropospheric BrO by satellite sensors (Choi et al., 2011). Here, the com-
parisons are made in terms of tropospheric BrO vertical column density (BrOVCD

TROP).25

The OMI retrieval team reports total vertical column density of BrO. These data are
post-processed using a radiative transfer model and an estimate of the stratospheric
burden to yield BrOVCD

TROP (Theys et al., 2011; Choi et al., 2011).
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Estimated BrOVCD
TROP from DC-8 in situ measurements of BrO on the 17 April 2008

flight are compared to BrOVCD
TROP retrieved from OMI pixels closest in space and time to

the DC-8 flight track (Choi et al., 2011) in Fig. 5. BrOVCD
TROP from airborne in situ BrO

was calculated by integrating the profile of BrO from the surface to 7.5 km altitude. The
lowest altitude sampled by the aircraft during individual profiles ranged from 100 to5

500 m. When finding BrOVCD
TROP, we assumed the BrO mixing ratio between the surface

and the lowest sampled altitude was the median of values between 500 m and the
lowest sampled altitude. The median DC-8 profile of BrO, for all of ARCTAS, was
used for altitudes between the highest sampled by the DC-8 for a particular profile
and 7.5 km. Since BrO was below the detection limit of CIMS above 7.5 km altitude,10

we assumed BrO was zero between 7.5 km and the tropopause. The error bars in
Fig. 5 represent the uncertainties in satellite BrOVCD

TROP (horizontal) and in situ BrOVCD
TROP

(vertical), respectively. These uncertainties are described in detail by Choi et al. (2011).
An orthogonal least square regression was used to analyze the agreement between

satellite and in situ BrOVCD
TROP. Reduced chi-square is calculated by the minimum of the15

sum of the squared orthogonal distance between the measurements and the 1:1 Line.

χ2 =
1

n−2

∑
i

(Xi −xi )
2

σ2
xi

+
(Yi −yi )

2

σ2
yi

(2)

A value for reduced chi-square of 0.88 means the determinations of BrOVCD
TROP from

in situ sampling and satellite retrieval agree, to within the measurement uncertainty.
The satellite retrievals of tropospheric BrO using updated methods (Choi et al., 2011)20

captures the levels of BrO found by our CIMS instrument. This result, combined with
the consistency between CIMS BrO and MC soluble bromide, represents an important
advance in our quantitative understanding of tropospheric bromine chemistry.
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4 Summary

Characterization of the MC response to gas phase bromine species enables better
use of soluble bromide data from previous and future field missions focusing on polar
halogen chemistry. In this study, the response of the MC to Br2, HOBr, BrO and HBr
as soluble bromide (Br−) was measured. The MC was found to detect bromine in the5

following compounds Br2, HOBr, BrO, and HBr as soluble bromide with an efficiency
per molecule of 0.9±0.1, 1.06±0.30, 0.4±0.1, and 0.95±0.1, respectively. These
measured response factors (except that of Br2) were used to model soluble bromide
from CIMS measurements of BrO obtained on the 17 April 2008 flight of ARCTAS.
The agreement (R2 =0.76; slope=0.98; intercept=−3.5 pptv) between measured and10

observed soluble bromide, when BrO was above the detection limit (>2 pptv) under
unpolluted conditions (NO<100 pptv), indicates in situ BrO measurements by CIMS
were consistent with the observed soluble bromide. BrO column densities calculated
from CIMS measurements were also consistent with the tropospheric BrO columns
derived from OMI satellite data, using a stratospheric burden that includes a significant15

contribution from VSL bromocarbons.
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Table 1. The response of MC to different levels of Br2 and HOBr sources from setup A and B.

Setup A Soluble bromide Br− Br2 source HOBr source Ratio=Br−

(ppbv) (ppbv) (ppbv) /(Br2×2+HOBr)

HOBr + Br2 mixture 5.6 1.7 9.8 0.42
(N2 flow = 25 sccm)

Br2 permeation tube 2.5 3.3 0.0 0.38

HOBr + Br2 mixture 5.1 2.2 7.9 0.42
(N2 flow = 25 sccm)

HOBr + Br2 mixture 1.8 0.9 3.3 0.36
(N2 flow = 10 sccm)

Br2 permeation tube 2.7 3.3 0.0 0.41

HOBr + Br2 mixture 1.9 0.8 2.8 0.44
(N2 flow = 10sccm)

Setup B Soluble bromide Br− Br2 source HOBr source Ratio=Br−

(ppbv) (ppbv) (ppbv) /(Br2×2+HOBr×2)

Br2 permeation tube 3.4 3.8 0 0.45

HOBr + Br2 mixture 10.5 2.4 8.8 0.47
(N2 flow = 30 sccm)

HOBr + Br2 mixture 12.4 2.7 9.1 0.53
(N2 flow = 30 sccm)

HOBr + Br2 mixture 9.6 1.7 6.4 0.59
(N2 flow = 20 sccm)
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Table 2. The ratio of detected Br− to Br2, HOBr and BrO. The errors are estimated from
the uncertainties in Br2, HOBr, BrO and Br− measurements and the variance (one standard
deviation) of the individual ratio measurements.

Br−/(Br2×2) Br−/HOBr Br−/BrO

Setup A 0.40±0.10 0.41±0.15 –

Setup B 0.45±0.10 1.06±0.30 0.4±0.1
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Mist Chamber
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Oven
T = 350  CO
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 N

2

Inlet

①Br2
20 sccm N2 Br2 perm tube Inlet

CIMS

① Br2

② HOBr+Br2

③ BrO+Br2

~ 3 slpm

Mist Chamber
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Ice
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Br2 liquid +AgNO3 solution
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① Br2
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③ BrO+Br2

Br2 perm tube

Fig. 1. Inlet configurations and Br2, HOBr and BrO sources for soluble bromide characteriza-
tion. In setup (A), the solid inlet line presents the sampling inlet connecting to the CIMS and
the dashed inlet line denotes the same inlet line connecting to the MC.
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Fig. 2a. Top panel: the flight track of ARCTAS on 17 April 2008 color-coded with aircraft
altitudes. The black star denotes the beginning of the flight and the dashed arrows represents
the direction of the flight. The red circle shows the location on the flight track that corresponds
to the bottom panel. Middle panel: time series of observations of ozone and altitude. Bottom
panel: observations of soluble bromide, BrO, lower limit of Br2 +HOBr, O3 and altitude for the
flight leg with the highest levels of bromine.

27026

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/26999/2011/acpd-11-26999-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/26999/2011/acpd-11-26999-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 26999–27030, 2011

Characterization of
soluble bromide
measurements

J. Liao et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 

 

10

8

6

4

2

0

A
ircraft A

ltitude (km
)

70ºN60ºN

165ºE

165ºW

135ºW

80ºN

Fairbanks

10

8

6

4

2

0

B
rO

 a
n

d
 H

O
B

r+
B

r 2
 (p

pt
v)

2:35 PM
4/17/2008

2:40 PM 2:45 PM 2:50 PM

Local solar time

60

50

40

30

20

10

O
zone (p

p
b

v)

5

4

3

2

1

0

A
ltitude (km

)

35

30

25

20

15

10

5

0

So
lu

bl
e 

br
om

id
e 

(p
pt

v)

 BrO
 HOBr + Br2

 Soluble Bromide
 O3

 Altitude

80

60

40

20

0

O
3 

(p
pb

v)

11:00 AM
4/17/2008

1:00 PM 3:00 PM 5:00 PM 7:00 PM

Local solar time

6

4

2

0

A
ltitude (km

)

 Altitude
 O3

Fig. 2b.

27027

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/26999/2011/acpd-11-26999-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/26999/2011/acpd-11-26999-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 26999–27030, 2011

Characterization of
soluble bromide
measurements

J. Liao et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

30

25

20

15

10

5

0

Br
om

in
e 

(p
pt

v)

2:35 PM 2:40 PM 2:45 PM 2:50 PM

Local solar time

4:35 PM 4:40 PM 4:45 PM

17 April 2008 

 Soluble Bromideobs.

 Soluble Bromidepred.

 HOBr_pred.
 HBr_pred.
 BrO obs.

Fig. 3. Example of observed BrO and soluble bromide, and predicted HOBr, HBr and soluble
bromide for two marine boundary layer flight legs when the highest levels of BrO and soluble
bromide were observed.
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Fig. 4. Left panel: correlation plot of predicted and observed soluble bromide in the bound-
ary layer when BrO was above the detection limit (>2 pptv) under unpolluted conditions
(NO<100 pptv). The correlation coefficient for this plot is 0.76. An equally weighted bivari-
ate regression yields a slope of 0.98 and an intercept of −3.5 pptv. Right panel: correlation plot
of predicted HOBr and observed lower limit of HOBr+Br2 when BrO was above detection limit
(>2 pptv) under unpolluted condition (NO<100 pptv). The correlation coefficient (R2) for this
plot is 0.86. An equally weighted bivariate regression yields a slope of 1.42 and an intercept of
1.71 pptv.
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Fig. 5. Scatter plot of calculated BROVCD
TROP from in situ measurements along the flight track of

flight on 17 April versus BROVCD
TROP from OMI satellite observations. The satellite columns are for

pixels closest in space and time to the aircraft profiles that resulted in the tropospheric columns
(see text). Slope and intercept from weighted bivariate regression and the reduced chi-square
are given.
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